LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Study on Small-Scale Ship Detection Based on Attention Mechanism

Photo by anniespratt from unsplash

In ship detection based on optical images, the system typically needs to handle small-scale targets in complex environments owing to special application scenarios, and small-scale targets are easily ignored after… Click to show full abstract

In ship detection based on optical images, the system typically needs to handle small-scale targets in complex environments owing to special application scenarios, and small-scale targets are easily ignored after a multi-layer convolution is applied in deep learning. A small-ship detection method based on an attention mechanism is therefore proposed in this study. The local attention module acts on the bottom feature prediction layer to highlight the key features and improve the detection ability of small target objects. Meanwhile, a high-level feature prediction layer is combined to classify, detect, and improve the recognition accuracy of the model. In this study, training was conducted on the SeaShips dataset. Because the SeaShips dataset is of a single type and consists of ships of roughly the same size, we changed the size of the default box, which not only improves the detection speed, it also significantly improves the detection accuracy compared with a conventional SSD algorithm.

Keywords: small scale; detection based; detection; based attention; ship detection

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.