The smart grid accessibility over the Internet of Things (IoT) is becoming attractive to electrical grid operators as it brings considerable operational and cost efficiencies. However, this in return creates… Click to show full abstract
The smart grid accessibility over the Internet of Things (IoT) is becoming attractive to electrical grid operators as it brings considerable operational and cost efficiencies. However, this in return creates significant cyber security challenges, such as fortification of state estimation data such as state variables against false data injection attacks (FDIAs). In this paper, a clustered partitioning state estimation (CPSE) technique is proposed to detect FDIA by using static state estimation, namely, weighted least square (WLS) method in conjunction with dynamic state estimation using minimum variance unscented Kalman filter (MV-UKF) which improves the accuracy of state estimation. The estimates acquired from the MV-UKF do not deviate like WLS as these are purely based on the previous iteration saved in the transition matrix. The deviation between the corresponding estimations of WLS and MV-UKF are utilised to partition the smart grid into smaller sub-systems to detect FDIA and then identify its location. To validate the proposed detection technique, FIDAs are injected into IEEE 14-bus, IEEE 30-bus, IEEE 118-bus, and IEEE 300-bus distribution feeder using MATPOWER simulation platform. Our results clearly demonstrate that the proposed technique can locate the attack area efficiently compared to other techniques such as chi square.
               
Click one of the above tabs to view related content.