LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bloodstain Identification Based on Visible/Near-Infrared Hyperspectral Imaging With Convolutional Neural Network

Photo by quangtri from unsplash

Blood samples are easily damaged in traditional bloodstain detection and identification. In complex scenes with interfering objects, bloodstain identification may be inaccurate, with low detection rates and false-positive results. In… Click to show full abstract

Blood samples are easily damaged in traditional bloodstain detection and identification. In complex scenes with interfering objects, bloodstain identification may be inaccurate, with low detection rates and false-positive results. In order to meet these challenges, we propose a bloodstain detection and identification method based on hyperspectral imaging and mixed convolutional neural networks, which enables fast and efficient non-destructive identification of bloodstains. In this study, we apply visible/near-infrared reflectance hyperspectral imaging in the 380–1000 nm spectral region to analyze the shape, structure, and biochemical characteristics of bloodstains. Hyperspectral images of bloodstains on different substrates and six bloodstain analogs are experimentally obtained. The acquired spectral pixels are pre-processed by Principal Component Analysis (PCA). For bloodstains and different bloodstain analogs, regions of interest are selected from each substance to obtain pixels, which are further used in convolutional neural network (CNN) modeling. After the mixed CNN modeling is completed, pixels are selected from the hyperspectral images as a test set for bloodstains and bloodstain analogs. Finally, the bloodstain recognition ability of the mixed 2D-3D CNN model is evaluated by analyzing the kappa coefficient and classification accuracy. The experimental results show that the accuracy of the constructed CNN bloodstain identification model reaches 95.4%. Compared with other methods, the bloodstain identification method proposed in this study has higher efficiency and accuracy in complex scenes. The results of this study will provide a reference for the future development of the bloodstain online detection system.

Keywords: identification; hyperspectral imaging; bloodstain; convolutional neural; bloodstain identification; visible near

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.