LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Digital Twin-Based Automatic Programming Method for Adaptive Control of Manufacturing Cells

Photo from wikipedia

The booming personalized and customized demands of customers in Industry 4.0 pose a great challenge for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches… Click to show full abstract

The booming personalized and customized demands of customers in Industry 4.0 pose a great challenge for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond to changes in customer demands, where, however, the implementation of an automatic programming method with high control accuracy and low control delay is still challenging. The above unaddressed issue brings about a lot of labor-intensive and time-consuming manual offline programming work when adjusting the scheduling scheme to meet dynamic customer demands, resulting in limited flexibility and responsiveness in current manufacturing systems. To bridge this gap, a bi-level adaptive control architecture enabled by an automatic programming method is proposed and embedded into a digital twin manufacturing cell (DTMC). The bi-level architecture aims to automatically map an input task scheduling scheme with a batch of jobs into a group of control programs through a behavior model network and a set of event models embedded in DTMC. It also provides an adaptive program modification mechanism to quickly adapt to the dynamic adjustment of the scheduling scheme caused by the changing of customer demands or production conditions, thus equipping DTMC with strong flexibility and responsiveness. Based on the bi-level architecture, a DTMC prototype system is developed, where its application and evaluation examples demonstrate the feasibility and effectiveness of the proposed method.

Keywords: automatic programming; control; adaptive control; programming method; method

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.