LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Tent-Levy Fireworks Algorithm for the UAV Task Allocation Problem Under Uncertain Environment

Photo by theblowup from unsplash

Recently, unmanned aerial vehicle (UAV) task allocation is a hot topic both in the civilian and military, while the research of considering uncertainty and multi-objective is still in its infancy.… Click to show full abstract

Recently, unmanned aerial vehicle (UAV) task allocation is a hot topic both in the civilian and military, while the research of considering uncertainty and multi-objective is still in its infancy. Firstly, based on the uncertainty theory, a mathematical model of the uncertain multi-objective UAV task allocation problem with uncertain variables in both objective function and constraint conditions is established. The expected value criterion and opportunity constraint are introduced to transform the model into a deterministic optimization model. Furthermore, because traditional fireworks algorithm (FWA) has the shortcomings of low solution accuracy and slow convergence speed in solving the UAV task allocation problem, a novel Tent-Levy FWA (TLFWA) based on discrete update process is designed by introducing integer coding, Tent chaotic mapping and Levy variation. Experimental results show that the mean cost calculated by TLFWA is 8.17% and 13.73% lower than that of FWA and particle swarm optimization algorithm respectively, which proves the effectiveness of TLFWA. This study provides a new way to solve multi-objective and uncertain decision-making problems.

Keywords: allocation problem; task allocation; uav task

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.