LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Signals in MC–CDMA Using a Novel Iterative Block Decision Feedback Equalizer

Photo by garri from unsplash

This paper presents a technique to mitigate multiple access interference (MAI) in multicarrier code division multiple access (MC-CDMA) wireless communications systems. Although under normal circumstances the MC-CDMA system can achieve… Click to show full abstract

This paper presents a technique to mitigate multiple access interference (MAI) in multicarrier code division multiple access (MC-CDMA) wireless communications systems. Although under normal circumstances the MC-CDMA system can achieve high spectral efficiency and resistance towards inter symbol interference (ISI) however when exposed to substantial nonlinear distortion the issue of MAI manifests. Such distortion results when the power amplifiers are driven into saturation or when the transmit signal experiences extreme adverse channel conditions. The proposed technique uses a modified iterative block decision feedback equalizer (IB-DFE) that uses a minimal mean square error (MMSE) receiver in the feed-forward path to nullify the residual interference from the IB-DFE receiver. The received signal is re-filtered in an iterative process to significantly improve the MC-CDMA system’s performance. The effectiveness of the proposed modified IB-DFE technique in MC-CDMA systems has been analysed under various harsh nonlinear conditions, and the results of this analysis presented here confirm the effectiveness of the proposed technique to outperform conventional methodologies in terms of the bit error rate (BER) and lesser computational complexity.

Keywords: decision feedback; feedback equalizer; iterative block; cdma; block decision

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.