LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Benchmark Performance of Digital QKD Platform Using Quantum Permutation Pad

Photo by markusspiske from unsplash

Quantum permutation pad or QPP is a set of quantum permutation gates. QPP has been demonstrated for quantum secure encryption in both classical and quantum computing systems recently, even at… Click to show full abstract

Quantum permutation pad or QPP is a set of quantum permutation gates. QPP has been demonstrated for quantum secure encryption in both classical and quantum computing systems recently, even at a noisy 5-qubit IBMQ systems. In a classical computing system, QPP encryption is implemented as a permutation gate matrix multiplication with information state vectors. In a quantum computing system, QPP is compiled into a quantum encryption circuit in a native quantum computer and encryption is performed through QPP circuit. Leveraging its quantum mechanical characteristics, we report a digital QKD or D-QKD platform using QPP as a quantum mechanical algorithm implemented in classical systems to distribute quantum entropy, generated from physical quantum random number generators or QRNG, and quantum key over the internet. D-QKD interfaces have been developed to support the photonic QKD standard ETSI-014. This makes any systems with ETSI QKD standards compatible with D-QKD. D-QKD offers point-to-point quantum entropy and quantum key distributions as well as point-to-multi-points quantum key synchronizations with speeds 1000x faster than photonic QKD. This paper reports benchmark performance tests and randomness quality tests for pure quantum entropy generated by a QRNG and expanded entropy using the QPP protocol. The work has been funded by the PlanQK1 project and deployed within the OpenQKD2 testbed Berlin, operated by Deutsche Telekom.

Keywords: quantum permutation; digital qkd; permutation; permutation pad; qkd

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.