LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multi-Objective Quantum-Inspired Seagull Optimization Algorithm Based on Decomposition for Unmanned Aerial Vehicle Path Planning

Photo by patresinger from unsplash

The traditional seagull optimization algorithm cannot handle multi-objective optimization problems, so a multi-objective quantum-inspired seagull optimization algorithm based on decomposition (MOQSOA/D) is proposed. Multi-objective computing and quantum computing are introduced… Click to show full abstract

The traditional seagull optimization algorithm cannot handle multi-objective optimization problems, so a multi-objective quantum-inspired seagull optimization algorithm based on decomposition (MOQSOA/D) is proposed. Multi-objective computing and quantum computing are introduced into MOQSOA/D. MOQSOA/D transforms the multi-objective problem into multiple scalar optimization sub-problems, and establishes a dynamic archive and a leadership archive at the same time. The Pareto solution of each sub-problem is stored in a dynamic archive, and the non-dominated Pareto solution is stored in the leader archive. While processing each sub-problem, each seagull is represented by a string of qubits, which is used to calculate the current seagull direction of flight, and a variable angular-distance rotation (VAR) gate is used to change the probability amplitude of the qubits, thereby updating the direction of flight. Penalty-based boundary intersection approach is introduced to determine whether the generated Pareto solution is retained. The proposed algorithm and six different algorithms were tested on 69 indicators, and the results show that the algorithm achieved better results in 40 indicators. In addition, a Unmanned Aerial Vehicle (UAV) path planning model in three-dimensional environment is designed to test the utility of MOQSOA/D, and the algorithm is compared with the other algorithm to demonstrate its effectiveness.

Keywords: optimization algorithm; multi objective; seagull optimization; objective quantum; optimization

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.