LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resorting to Context-Aware Background Knowledge for Unveiling Semantically Related Social Media Posts

Photo from wikipedia

Social media networks have become a prime source for sharing news, opinions, and research accomplishments in various domains, and hundreds of millions of posts are announced daily. Given this wealth… Click to show full abstract

Social media networks have become a prime source for sharing news, opinions, and research accomplishments in various domains, and hundreds of millions of posts are announced daily. Given this wealth of information in social media, finding related announcements has become a relevant task, particularly in trending news (e.g., COVID-19 or lung cancer). To facilitate the search of connected posts, social networks enable users to annotate their posts, e.g., with hashtags in tweets. Albeit effective, an annotation-based search is limited because results will only include the posts that share the same annotations. This paper focuses on retrieving context-related posts based on a specific topic, and presents PINYON, a knowledge-driven framework, that retrieves associated posts effectively. PINYON implements a two-fold pipeline. First, it encodes, in a graph, a CORPUS of posts and an input post; posts are annotated with entities for existing knowledge graphs and connected based on the similarity of their entities. In a decoding phase, the encoded graph is used to discover communities of related posts. We cast this problem into the Vertex Coloring Problem, where communities of similar posts include the posts annotated with entities colored with the same colors. Built on results reported in the graph theory, PINYON implements the decoding phase guided by a heuristic-based method that determines relatedness among posts based on contextual knowledge, and efficiently groups the most similar posts in the same communities. PINYON is empirically evaluated on various datasets and compared with state-of-the-art implementations of the decoding phase. The quality of the generated communities is also analyzed based on multiple metrics. The observed outcomes indicate that PINYON accurately identifies semantically related posts in different contexts. Moreover, the reported results put in perspective the impact of known properties about the optimality of existing heuristics for vertex graph coloring and their implications on PINYON scalability.

Keywords: semantically related; social media; decoding phase; knowledge; related posts; context

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.