In this technological era, smart and intelligent systems that are integrated with artificial intelligence (AI) techniques, algorithms, tools, and technologies, have impact on various aspects in our daily life. Communication… Click to show full abstract
In this technological era, smart and intelligent systems that are integrated with artificial intelligence (AI) techniques, algorithms, tools, and technologies, have impact on various aspects in our daily life. Communication and interaction between human and machine using speech become increasingly important, since it is an obvious substitute for keyboards and screens in the communication process. Therefore, numerous technologies take advantage of speech such as Automatic Speech Recognition (ASR), where human natural speech for many languages is used as the means to interact with machines. Majority of the related works on ASR concentrate on the development and evaluation of ASR systems that serve a single language only, such as Arabic, English, Chinese, French, and many others. However, research attempts that combine multiple languages (bilingual and multilingual) during the development and evaluation of ASR systems are very limited. This paper aims to provide comprehensive research background and fundamentals of bilingual ASR, and related works that have combined two languages for ASR tasks from 2010 to 2021. It also formulates research taxonomy and discusses open challenges to the bilingual ASR research. Based on our literature investigation, it is clear that bilingual ASR using deep learning approach is highly demanded and is able to provide acceptable performance. In addition, many combinations of two languages such as Arabic-English, Arabic-Malay, and others, are still limited, which can open new research opportunities. Finally, it is clear that ASR research is moving towards not only bilingual ASR, but also multilingual ASR.
               
Click one of the above tabs to view related content.