LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cervical Cancer Diagnosis Using Intelligent Living Behavior of Artificial Jellyfish Optimized With Artificial Neural Network

Photo by nci from unsplash

Cervical cancer affects nearly 4% of the women across the globe and leads to mortality if not treated in early stage. A few decades before, the mortality rate was too… Click to show full abstract

Cervical cancer affects nearly 4% of the women across the globe and leads to mortality if not treated in early stage. A few decades before, the mortality rate was too high when compared to the present statistics. This is achieved as nowadays most of women are aware of this disease and undergo health examination mainly for screening cervical cancer on regular basis. But only the accurate diagnosis can be helpful for further treatment. Many works are carried out for accurate diagnosis and always have some limitations in accurate predictions. In this work, an efficient algorithm is proposed for the accurate diagnosis of cervical cancer. A meta-heuristic called artificial Jellyfish search optimizer (JS) algorithm is combined with artificial neural network (ANN) to tackle this problem. The proposed algorithm is called JellyfishSearch_ANN and is employed to classify the cervical cancer dataset with four type of targets based on the examination. The JellyfishSearch_ANN provides outstanding results among other classifiers taken for comparison and mainly its classification accuracy is found to be above 98.87% for all targets.

Keywords: cervical cancer; neural network; diagnosis; artificial jellyfish; artificial neural; cancer

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.