LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Note on the Maximum Size of a Prefix Code

Photo from wikipedia

In the presented paper, we investigate the problem of finding the maximum possible cardinality of a dictionary of a prefix code for a string of a given length. Namely, we… Click to show full abstract

In the presented paper, we investigate the problem of finding the maximum possible cardinality of a dictionary of a prefix code for a string of a given length. Namely, we present a sharp proof of the cardinality of such a dictionary using results from the number theory. What is more, the presented formula is for the general case of a string over any, not just binary, alphabet. Furthermore, we give conditions on the existence of the so-called canonical dictionary for such a string, where the codewords of the dictionary have at most two different lengths, differing by one. Our approach is based on reformulating the problem of finding the maximum possible cardinality of a dictionary for a string of a given length as the problem of finding the maximum possible number of summands in the Kraft-Szillard partition of the number representing the length of the string, by solving a Diophantine equation related to the canonical partition of the number. One of the areas of applications of presented results is the security-estimate of ciphers based on prefix codes.

Keywords: prefix code; finding maximum; problem finding; number; prefix

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.