LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring Early Detection of Anomalies

Photo by jontyson from unsplash

Early detection is a matter of growing importance in multiple domains as network security, health conditions over social network services or weather forecasts related disasters. It is not enough to… Click to show full abstract

Early detection is a matter of growing importance in multiple domains as network security, health conditions over social network services or weather forecasts related disasters. It is not enough to make a good decision but it also needs to be made on time. In this paper, we define a method to evaluate detection of anomalies in time-aware systems. To do so, we present the early detection problem from a generic perspective, examine the evaluation metrics available and propose a new metric, named TaP (Time aware Precision). A set of experiments using three different datasets from different fields are performed in order to compare the behaviour of the different metrics. Two different approaches were followed, first a batch evaluation is performed, followed by a streaming evaluation which allows to present a more realistic behaviour of the systems. For both steps, we propose two sets of experiments. The first one using baseline models, followed by the evaluation of a set of Machine Learning algorithms results. The presented metric allows the amount of items needed to take a decision to be taken into account, not depending on the specific dataset but on the nature of the problem to solve.

Keywords: evaluation; time; detection anomalies; measuring early; detection; early detection

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.