LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward Interactive Music Generation: A Position Paper

Music generation using deep learning has received considerable attention in recent years. Researchers have developed various generative models capable of imitating musical conventions, comprehending the musical corpora, and generating new… Click to show full abstract

Music generation using deep learning has received considerable attention in recent years. Researchers have developed various generative models capable of imitating musical conventions, comprehending the musical corpora, and generating new samples based on the learning outcome. Although the samples generated by these models are persuasive, they often lack musical structure and creativity. For instance, a vanilla end-to-end approach, which deals with all levels of music representation at once, does not offer human-level control and interaction during the learning process, leading to constrained results. Indeed, music creation is a recurrent process that follows some principles by a musician, where various musical features are reused or adapted. On the other hand, a musical piece adheres to a musical style, breaking down into precise concepts of timbre style, performance style, composition style, and the coherency between these aspects. Here, we study and analyze the current advances in music generation using deep learning models through different criteria. We discuss the shortcomings and limitations of these models regarding interactivity and adaptability. Finally, we draw the potential future research direction addressing multi-agent systems and reinforcement learning algorithms to alleviate these shortcomings and limitations.

Keywords: music; music generation; style; interactive music; toward interactive

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.