Although stochastic gradient algorithm can identify linear systems with high efficiency. It is inefficient for nonlinear systems for the difficulty in the step-size designing. To overcome this dilemma, this paper… Click to show full abstract
Although stochastic gradient algorithm can identify linear systems with high efficiency. It is inefficient for nonlinear systems for the difficulty in the step-size designing. To overcome this dilemma, this paper proposes a fractional stochastic gradient algorithm for systems with piece-wise linear input. First, the nonlinear system is transformed into a polynomial nonlinear model, then the parameters and time-delay are estimated iteratively based on the fractional stochastic gradient algorithm and self-organizing maps method. In addition, to increase the convergence rates of the fractional stochastic gradient algorithm, a multi-innovation fractional stochastic gradient algorithm is developed. Convergence analysis and simulation examples are introduced to show the effectiveness of the proposed algorithms.
               
Click one of the above tabs to view related content.