Estimating sharp images from blurry observations is still a difficult task in the image processing research field. Previous works may produce deblurred images that lose details or contain artifacts. To… Click to show full abstract
Estimating sharp images from blurry observations is still a difficult task in the image processing research field. Previous works may produce deblurred images that lose details or contain artifacts. To deal with this problem, a feasible solution is to seek the help of additional images, such as the near-infrared image and the flashlight image, etc. In this paper, we propose a fusion framework for image deblurring, called Guided Deblurring Fusion Network (GDFNet), to integrate the multi-modal information for better image deblurring performance. Unlike previous works that directly compute a deblurred image using paired multi-modal degraded and guidance images, GDFNet employs image fusion techniques to obtain a deblurred image. GDFNet can combine the advantages by fusing the pre-deblurred streams of single and guided image deblurring using convolutional neural network (CNN). We adopt a blur/residual image splitting strategy by fusing the residual images to enhance the representation ability of encoders and preserve details. We employ a 2-level coarse-to-fine reconstruction strategy to improve the fusion and deblurring performance by supervising its multi-scale output. Quantitative comparisons on multi-modal image datasets show that our GDFNet can recover correct structures and produce fewer artifacts while preserving more details. The peak signal-to-noise ratio (PSNR) of GDFNet evaluated on the blurry/flash dataset is at least 0.9 dB higher than the compared algorithms.
               
Click one of the above tabs to view related content.