This paper proposes a FAst paRAllel and pipeliNE Q-learning accelerator (FARANE-Q) for a configurable Reinforcement Learning (RL) algorithm implemented in a System on Chip (SoC). The proposed work offers flexibility,… Click to show full abstract
This paper proposes a FAst paRAllel and pipeliNE Q-learning accelerator (FARANE-Q) for a configurable Reinforcement Learning (RL) algorithm implemented in a System on Chip (SoC). The proposed work offers flexibility, configurability, and scalability while maintaining computation speed and accuracy to overcome the challenges of a dynamic environment and increasing complexity. The proposed method includes a Hardware/Software (HW/SW) design methodology for the SoC architecture to achieve flexibility. We also propose joint optimizations on the algorithm, architecture, and implementation to obtain optimum (high efficiency) performance, specifically in energy and area efficiency. Furthermore, we implemented the proposed design in a real-time Zynq Ultra96-V2 FPGA platform to evaluate the functionality with an actual use case of smart navigation. Experimental results confirm that the proposed accelerator FARANE-Q outperforms state-of-the-art works by achieving a throughput of up to 148.55 MSps. It corresponds to the energy efficiency of 1747.64 MSps/W per agent for 32-bit and 2424.33 MSps/W per agent for 16-bit FARANE-Q. Moreover, the proposed 16-bit FARANE-Q outperforms other related works by an improvement of at least
               
Click one of the above tabs to view related content.