LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topic Modeling: Perspectives From a Literature Review

Photo from wikipedia

Topic modeling is a Natural Language Processing technique that has gained popularity over the last ten years, with applications in multiple fields of knowledge. However, there is insufficient empirical evidence… Click to show full abstract

Topic modeling is a Natural Language Processing technique that has gained popularity over the last ten years, with applications in multiple fields of knowledge. However, there is insufficient empirical evidence to show how this field of study has developed over the years, as well as the main models that have been applied in different contexts. The objective of this paper is to analyze the evolution of the topic modeling technique, the main areas in which it has been applied, and the models that are recommended for specific types of data. The methodology applied is based on bibliometric analysis. First, we searched the Web of Science and the Scopus databases. We then used scientometric techniques and a Tree of Science methodology, which allowed us to analyze the search results from the perspectives of classics, structure, and trends. The results show that the USA and China are among the most productive countries in this field and the applications have been mainly in the identification of sub-topics in short texts, such as social networks and blogs. The main conclusion of this work is that topic modeling is a versatile technique that can complement systematic literature reviews and that has been well-received in different academic and research contexts. The results of this study will help researchers and academics to recognize the importance of these techniques for reviewing large volumes of unstructured information, such as research articles, and in general, for systematic literature reviews.

Keywords: modeling perspectives; methodology; topic; topic modeling; perspectives literature

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.