LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatiotemporal Sequence-to-Sequence Clustering for Electric Load Forecasting

Photo by jontyson from unsplash

Massive electrical load exhibits many patterns making it difficult for forecast algorithms to generalise well. Most learning algorithms produce a better forecast for dominant patterns in the case of weekday… Click to show full abstract

Massive electrical load exhibits many patterns making it difficult for forecast algorithms to generalise well. Most learning algorithms produce a better forecast for dominant patterns in the case of weekday consumption and otherwise for less dominant patterns in weekend and holiday consumption. In view of this, there is the need to cluster the load patterns, so learning algorithms can focus on the patterns independently to produce forecasts with better accuracy for all cases. However, clustering time-series data breaks the time-series dependency, making model training difficult. This paper presents a novel sequence-to-sequence cluster framework to reform time-series dependency after clustering; this enables independent clusters to be modelled using Convolutional Neural Network-Gated Recurrent Unit, which learns spatiotemporal features for future forecasts. A real-world dataset by the Korea Power Exchange composed of nationwide consumption is used for case studies and experiments. Experimental results verify that the proposed study effectively improves the accuracy of electric load forecasting by about 50%, with a WAPE of 0.67%. The proposed method also speeds up the training process of the forecast algorithm by about 35%, given that only a subset of the dataset is trained due to clustering. Korea Water Resources Corporation has implemented the proposed method for load forecasting and system marginal price estimation.

Keywords: time series; electric load; load forecasting; sequence; sequence sequence; load

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.