The Radio Access Network (RAN) slice planning is a key phase within the RAN slice management and orchestration process. Based on the performance requirements of requested RAN slices and key… Click to show full abstract
The Radio Access Network (RAN) slice planning is a key phase within the RAN slice management and orchestration process. Based on the performance requirements of requested RAN slices and key performance indicators of the RAN and existing RAN slices, the RAN slice planning mainly consists of deciding (a) the feasibility of deploying new RAN slices; (b) re-configuring the existing RAN accordingly; and (c) the need to renegotiate the Service Level Agreements (SLAs) and/or expand the RAN (i.e., radio resources, carriers, cells etc) if one or more RAN slices cannot be accommodated in a first attempt. Under this context, we propose a framework for planning RAN slices which require their data sessions get a Guaranteed Bit Rate (GBR) and the probability of blocking such sessions is below a threshold. To meet such requirements, our framework plans the amount of prioritized radio resources for new and already deployed RAN slices. We formulate the RAN slice planning as multiple ordinal potential games and demonstrate the existence of a Nash Equilibrium solution which minimizes the average probability of blocking data sessions for all the RAN slices. We perform detailed simulations to demonstrate the effectiveness of the proposed solution in terms of performance, and renegotiation capability.
               
Click one of the above tabs to view related content.