LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A Case Study

Photo by 90angle from unsplash

In the Flexible Manufacturing System (FMS), where material processing is carried out in the form of tasks from one department to another, the use of Automated Guided Vehicles (AGVs) is… Click to show full abstract

In the Flexible Manufacturing System (FMS), where material processing is carried out in the form of tasks from one department to another, the use of Automated Guided Vehicles (AGVs) is significant. The application of multiple-load AGVs can be understood to boost FMS throughput by multiple orders of magnitude. For the transportation of materials and items inside a warehouse or manufacturing plant, an AGV, a mobile robot, offers extraordinary industrial capabilities. The technique of allocating AGVs to tasks while taking into account the cost and time of operations is known as AGV scheduling. Most research has exclusively addressed single-objective optimization, whereas multi-objective scheduling of AGVs is a complex combinatorial process without a single solution, in contrast to single-objective scheduling. This paper presents the integrated Local Search Probability-based Memetic Water Cycle (LSPM-WC) algorithm using a spinning mill as a case study. The scheduling model’s goal is to maximize machine efficiency. The scheduling of the statistical tests demonstrated the applicability of the proposed model in lowering the makespan and fitness values. The mean AGV operating efficiency was higher than the other estimated models, and the LSPM-WC surpassed the different algorithms to produce the best result.

Keywords: automated guided; mill case; scheduling; case study; spinning mill; load

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.