Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of… Click to show full abstract
Wireless capsule endoscopy (WCE) is a recently developed tool that allows for the painless and non-invasive examination of the entire gastrointestinal (GI) tract. The microcamera captures a large number of redundant frames for each WCE examination such that a video summarization technique is needed to assist in diagnosis. However, prevalent methods of summarizing WCE videos focus only on the representativeness of the frames owing to a lack of high-level information on their importance. This paper develops a Frame Importance-Assisted Sparse Subset Selection model, called FIAS3, to integrate the high-level frame importance from networks into a sparse subset selection model. The FIAS3 is optimized under three constraints: 1) a frame importance matrix to help pay more attention to important frames, 2) a sparsity constraint to make video summaries more compact, and 3) a similarity-inhibiting constraint to reduce redundancy. The results of experiments on a public dataset demonstrated that our FIAS3 outperforms other methods of summarizing WCE videos. Specifically, its coverage and video reconstruction error were 92% and 0.143, respectively, at a 90% compression ratio, recording respective at least 16.9% and 0.031 improvements over other methods. The results of generalization experiments showed that FIAS3 also achieves competitive results on private datasets.
               
Click one of the above tabs to view related content.