LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bare-Bones Particle Swarm Optimization With Crossed Memory for Global Optimization

Photo from wikipedia

The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method’s accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around… Click to show full abstract

The offspring selection strategy is the core of evolutionary algorithms, which directly affects the method’s accuracy. Normally, to improve the search accuracy in local areas, the population converges quickly around the optimal individual. However, excessive aggregation can narrow the search range of the population, and thus the population may be trapped by local optima. To overcome this problem, a bare-bones particle swarm optimization with crossed memory (BPSO-CM) is proposed in this work. The BPSO-CM contains a multi-memory storage mechanism (MSM) and an elite offspring selection strategy (EOSS). The MSM enables an extra storage space to extend the search ability of the particle swarm and the EOSS enhances the local minimum escaping ability of the particle swarm. The population is endowed with the ability of enhanced global search through the cooperation of the MSM and the EOSS. To verify the performance of the BPSO-CM, the CEC2017 benchmark functions are used in experiments, five population-based methods are selected in the control group. Finally, experimental results proved that the BPSO-CM can present highly accurate results for global optimization problems.

Keywords: particle swarm; bones particle; bare bones; memory; population; optimization

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.