LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MICAL: Mutual Information-Based CNN-Aided Learned Factor Graphs for Seizure Detection From EEG Signals

Photo by alterego_swiss from unsplash

We develop a hybrid model-based data-driven seizure detection algorithm called Mutual Information-based CNN-Aided Learned factor graphs (MICAL) for detection of eclectic seizures from EEG signals. Our proposed method contains three… Click to show full abstract

We develop a hybrid model-based data-driven seizure detection algorithm called Mutual Information-based CNN-Aided Learned factor graphs (MICAL) for detection of eclectic seizures from EEG signals. Our proposed method contains three main components: a neural mutual information (MI) estimator, 1D convolutional neural network (CNN), and factor graph inference. Since during seizure the electrical activity in one or more regions in the brain becomes correlated, we use neural MI estimators to measure inter-channel statistical dependence. We also design a 1D CNN to extract additional features from raw EEG signals. Since the soft estimates obtained as the combined features from the neural MI estimator and the CNN do not capture the temporal correlation between different EEG blocks, we use them not as estimates of the seizure state, but to compute the function nodes of a factor graph. The resulting factor graphs allows structured inference which exploits the temporal correlation for further improving the detection performance. On public CHB-MIT database, We conduct three evaluation approaches using the public CHB-MIT database, including 6-fold leave-four-patients-out cross-validation, all patient training; and per patient training. Our evaluations systematically demonstrate the impact of each element in MICAL through a complete ablation study and measuring six performance metrics. It is shown that the proposed method obtains state-of-the-art performance specifically in 6-fold leave-four-patients-out cross-validation and all patient training, demonstrating a superior generalizability.

Keywords: mutual information; cnn; detection; factor graphs; eeg signals

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.