LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graph-Based Profiling of Blockchain Oracles

Photo by campaign_creators from unsplash

The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles… Click to show full abstract

The usage of blockchain technology has been significantly expanded with smart contracts and blockchain oracles. While smart contracts enables to automate the execution of an agreement between untrusted parties, oracles provide smart contracts with data external to a given blockchain, i.e., off-chain data. However, the validity and accuracy of such off-chain data can be questionable that compromises the transparency and immutability chacteristics of blockchain. Despite many studies on the trustworthiness of blockchain oracles, more precisely, off-chain data, their solutions are often ‘short-sighted’ and dependent on binary decisions. In this paper, we present a novel graph-based profiling method to determine the trustworthiness of blockchain oracles. We construct a graph with oracles as nodes and cumulative average discrepancies of validity and accuracy of data as edge weights. Our profiling method continues to update the graph, edge weights in particular, to distinguish trustworthy oracles. Clearly, this discourages the provision of false and inaccurate data. We have conducted an evaluation study to see the effectiveness of our proposed method, in which we have run the experiments utilizing the Ethereum network. Additionally, we have also calculated the cost of running these experiments. Consequently, our experiment results show that the proposed method achieves around 93% accuracy in identifying the trustworthiness of data sources.

Keywords: chain data; blockchain; smart contracts; graph based; based profiling; blockchain oracles

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.