LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MMNeRF: Multi-Modal and Multi-View Optimized Cross-Scene Neural Radiance Fields

Photo from wikipedia

We present MMNeRF, a simple yet powerful learning framework for highly photo-realistic novel view synthesis by learning Multi-modal and Multi-view features to guide neural radiance fields to a generic model.… Click to show full abstract

We present MMNeRF, a simple yet powerful learning framework for highly photo-realistic novel view synthesis by learning Multi-modal and Multi-view features to guide neural radiance fields to a generic model. Novel view synthesis has achieved great improvement with the significant success of NeRF-series methods. However, how to make the method generic across scenes has always been a challenging task. A good idea is to introduce 2D image features as prior knowledge for adaptive modeling, yet RGB features lack geometry and 3D spatial information, which causes shape-radiance ambiguity issues and lead to blurry and low-resolution results in the synthesis images. We propose a multi-modal multi-view method to make up for the existing methods. Specifically, we introduce depth features besides RGB features into the model and effectively fuse these multi-modal features by modality-based attention. Furthermore, Our framework innovatively adopts the transformer encoder to fuse multi-view features and uses the transformer decoder to adaptively incorporate the target view with global memory. Extensive experiments are carried out on both categories-specific and category-agnostic benchmarks, and the results demonstrate that our MMNeRF achieves state-of-the-art neural rendering performance.

Keywords: modal multi; view; radiance; multi modal; multi view

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.