Electric power systems worldwide are undergoing a foundational transition from mechanical-backed generation technologies dominating the resource mixture, primarily synchronous generators, into a hybrid system consisting of periods of a preponderance… Click to show full abstract
Electric power systems worldwide are undergoing a foundational transition from mechanical-backed generation technologies dominating the resource mixture, primarily synchronous generators, into a hybrid system consisting of periods of a preponderance of power electronics-backed generation technologies, primarily solar photovoltaics and wind power plants and battery storage systems. Almost all current inverter-based resources integrated into bulk power systems are grid-following technology, and there exists a knowledge gap concerning the impacts of large-scale integration of grid-following inverters on power system dynamics, which is a critical aspect of power system planning and operation. This paper serves as a tutorial and addresses the stability and reliability challenges pertinent to the integration of grid-following interfaced inverter-based resources. While considering both small-signal and large-signal stability problems, it demonstrates and explains the underlying interrelated dynamics of electric angle, frequency, and voltage, as well as the impacts that system inertia can have on system stability. Industry-grade electromagnetic transient simulations in Power Systems Computer-Aided Design (PSCAD) are utilized to demonstrate the concepts presented in this paper, and all the computer models have been made available to the public at no cost.
               
Click one of the above tabs to view related content.