LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Machine Learning on Edge Computing Through Data Compression Techniques

Photo by cokdewisnu from unsplash

This paper discusses the increasing amount of data handled by companies and the need to use Big Data and Data Analytics to extract value from this data. However, due to… Click to show full abstract

This paper discusses the increasing amount of data handled by companies and the need to use Big Data and Data Analytics to extract value from this data. However, due to the large amount of data collected, challenges related to the computational capacity of machines often arise when performing this analysis to acquire relevant information for the organization, especially when we are using edge computing. The paper aims to train machine learning models using compressed data, with two compression techniques applied to the original data. The results show that models trained with compressed data achieved similar accuracy to those trained with uncompressed data, and different compression techniques were compared. The research extended a previous study by analyzing the use of autoencoders for compression and reducing both instances and dimensionality of the dataset. The accuracy rate of the models when trained with compressed data instead of original data was maintained.

Keywords: compression; machine learning; compression techniques; edge computing

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.