LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

G2-ResNeXt: A Novel Model for ECG Signal Classification

Photo by dkfra19 from unsplash

Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients’ ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent… Click to show full abstract

Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients’ ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB).

Keywords: classification; resnext; signal classification; ecg signal; model; novel model

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.