LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Secure IoMT for Disease Prediction Empowered With Transfer Learning in Healthcare 5.0, the Concept and Case Study

Photo from wikipedia

Identifying human diseases remains a difficult process, even in the age of advanced information technology and the smart healthcare industry 5.0. In the smart healthcare industry 5.0, precise prediction of… Click to show full abstract

Identifying human diseases remains a difficult process, even in the age of advanced information technology and the smart healthcare industry 5.0. In the smart healthcare industry 5.0, precise prediction of human diseases, particularly lethal cancer diseases, is critical for human well-being. The global Internet of Medical Things sector has advanced at a breakneck pace in recent years, from small wristwatches to large aircraft. The critical aspects of the Internet of Medical Things include security and privacy, owing to the massive scale and deployment of the Internet of Medical Things networks. Transfer learning with a secure IoMT-based approach is considered. The Google net deep machine-learning model is used for accurate disease prediction in the smart healthcare industry 5.0. We can easily and reliably anticipate the lethal cancer disease in the human body by using the secure IoMT-based transfer learning approach. Furthermore, the results of the proposed secure IoMT-based Transfer learning techniques are used to validate the best cancer disease prediction in the smart healthcare industry 5.0. The proposed secure IoMT-based transfer learning methodology reached 98.8%, better than the state-of-the-art methodologies used previously for cancer disease prediction in the smart healthcare industry 5.0.

Keywords: transfer learning; disease prediction; healthcare; secure iomt

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.