LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Auto-Encoder Based Orthogonal Time Frequency Space Modulation and Detection With Meta-Learning

Photo by jontyson from unsplash

To tackle a Doppler sensitivity problem of orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS) has been investigated, where information is carried over delay-Doppler domain. In this paper,… Click to show full abstract

To tackle a Doppler sensitivity problem of orthogonal frequency division multiplexing (OFDM), orthogonal time frequency space (OTFS) has been investigated, where information is carried over delay-Doppler domain. In this paper, to improve communication reliability in doubly dispersive channel, an auto-encoder (AE)-based OTFS modulation and detection scheme is developed, where the transmit OTFS waveform and its associated detection scheme at the receiver are jointly optimized in a deep learning framework. However, the conventional AE architecture which takes one-hot encoded input vector is hard to be reused in OTFS due to its enormous input dimensionality that increases exponentially on the number of grid points in delay-Doppler domain. To overcome it, we divide the delay-Doppler grid into multiple subblocks and associate the one-hot encoded vector with each subblock. Then, by concatenating them, one multi-hot vector is formed and exploited as the input vector for the proposed AE-based OTFS modulation and detection. We also develop a meta-learning scheme to effectively train the AE-based OTFS transceiver for newly updated channel profile.

Keywords: time frequency; detection; modulation detection; orthogonal time

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.