LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manta Ray Foraging Optimization Algorithm: Modifications and Applications

Photo from wikipedia

The novel metaheuristic manta ray foraging optimization (MRFO) algorithm is based on the smart conduct of manta rays. The MRFO algorithm is a newly developed swarm-based metaheuristic approach that emulates… Click to show full abstract

The novel metaheuristic manta ray foraging optimization (MRFO) algorithm is based on the smart conduct of manta rays. The MRFO algorithm is a newly developed swarm-based metaheuristic approach that emulates the supportive conduct performed by manta rays in search of food. The MRFO algorithm efficiently resolves several optimization difficulties in various domains due to its ability to provide an equilibrium between global and local searches during the search procedure, resulting in nearly optimal results. Thus, researchers have developed several variants of MRFO since its introduction. This paper provides an in-depth examination of recent MRFO research. First, the paper introduces the natural inspiration context of MRFO and its conceptual optimization framework, and then MRFO modifications, hybridizations, and applications across different domains are discussed. Finally, a meta-analysis of the developments of the MRFO is presented along with the possible future research directions. This study can be useful for researchers and practitioners in optimization, engineering design, machine learning, scheduling, image processing, and other fields.

Keywords: foraging optimization; manta ray; algorithm; ray foraging; mrfo; optimization

Journal Title: IEEE Access
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.