LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Verification of Rotor Demagnetization in a Fractional-Slot Concentrated-Winding PM Synchronous Machine Under Drive Fault Conditions

Photo from wikipedia

This paper presents the results of experimental tests designed to verify analytical predictions of the rotor demagnetization characteristics of a 0.6 kW (cont.) 9-slot/6-pole fractional-slot concentrated winding (FSCW) interior permanent… Click to show full abstract

This paper presents the results of experimental tests designed to verify analytical predictions of the rotor demagnetization characteristics of a 0.6 kW (cont.) 9-slot/6-pole fractional-slot concentrated winding (FSCW) interior permanent magnet (IPM) synchronous machine. The demagnetization characteristics of the rotor magnets in this commercially produced FSCW-IPM machine are measured using a test configuration that is designed to conduct multiple demagnetization tests on the same test machine under controlled temperature conditions. In this paper, finite-element (FE) predictions of the rotor demagnetization characteristics of the experimental machine during three-phase symmetrical short-circuit and single-phase asymmetrical short-circuit faults are presented. These results are compared with experimental test measurements of the postfault currents and the magnet flux density distribution following demagnetization, demonstrating very good agreement of many key features. These comparisons also confirm that 3-D effects and magnet material properties such as the magnet thermal coefficients have a significant impact on some details of the FE predictions of the machine's fault-mode response characteristics.

Keywords: slot concentrated; machine; concentrated winding; demagnetization; rotor demagnetization; fractional slot

Journal Title: IEEE Transactions on Industry Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.