LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers

Photo from wikipedia

The manufacturing of nanomaterials by the electrospinning process requires accurate and meticulous inspection of related scanning electron microscope ( SEM ) images of the electrospun nanofiber, to ensure that no… Click to show full abstract

The manufacturing of nanomaterials by the electrospinning process requires accurate and meticulous inspection of related scanning electron microscope ( SEM ) images of the electrospun nanofiber, to ensure that no structural defects are produced. The presence of anomalies prevents practical application of the electrospun nanofibrous material in nanotechnology. Hence, the automatic monitoring and quality control of nanomaterials is a relevant challenge in the context of Industry 4.0. In this paper, a novel automatic classification system for homogenous ( anomaly-free ) and non-homogenous ( with defects ) nanofibers is proposed. The inspection procedure aims at avoiding direct processing of the redundant full SEM image. Specifically, the image to be analyzed is first partitioned into sub-images ( nanopatches ) that are then used as input to a hybrid unsupervised and supervised machine learning system. In the first step, an autoencoder ( AE ) is trained with unsupervised learning to generate a code representing the input image with a vector of relevant features. Next, a multilayer perceptron ( MLP ) , trained with supervised learning, uses the extracted features to classify non-homogenous nanofiber ( NH-NF ) and homogenous nanofiber ( H-NF ) patches. The resulting novel AE-MLP system is shown to outperform other standard machine learning models and other recent state-of-the-art techniques, reporting accuracy rate up to 92.5% . In addition, the proposed approach leads to model complexity reduction with respect to other deep learning strategies such as convolutional neural networks ( CNN ) . The encouraging performance achieved in this benchmark study can stimulate the application of the proposed scheme in other challenging industrial manufacturing tasks.

Keywords: system; classification system; automatic classification; novel automatic; machine learning

Journal Title: IEEE/CAA Journal of Automatica Sinica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.