This paper studies price-based residential demand response management (PB-RDRM) in smart grids, in which non-dispatchable and dispatchable loads (including general loads and plug-in electric vehicles (PEVs)) are both involved. The… Click to show full abstract
This paper studies price-based residential demand response management (PB-RDRM) in smart grids, in which non-dispatchable and dispatchable loads (including general loads and plug-in electric vehicles (PEVs)) are both involved. The PB-RDRM is composed of a bi-level optimization problem, in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company (UC) by selecting optimal retail prices (RPs), while the lower-level demand response (DR) problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior. The challenges here are mainly two-fold: 1) the uncertainty of energy consumption and RPs; 2) the flexible PEVs' temporally coupled constraints, which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM. To address these challenges, we first model the dynamic retail pricing problem as a Markovian decision process (MDP), and then employ a model-free reinforcement learning (RL) algorithm to learn the optimal dynamic RPs of UC according to the loads' responses. Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches (i.e., distributed dual decomposition-based (DDB) method and distributed primal-dual interior (PDI)-based method), which require exact load and electricity price models. The comparison results show that, compared with the benchmark solutions, our proposed algorithm can not only adaptively decide the RPs through on-line learning processes, but also achieve larger social welfare within an unknown electricity market environment.
               
Click one of the above tabs to view related content.