LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel PDF Shape Control Approach for Nonlinear Stochastic Systems

Photo by jasonhk1920 from unsplash

In this work, a novel shape control approach of the probability density function (PDF) for nonlinear stochastic systems is presented. First, we provide the formula for the PDF shape controller… Click to show full abstract

In this work, a novel shape control approach of the probability density function (PDF) for nonlinear stochastic systems is presented. First, we provide the formula for the PDF shape controller without devising the control law of the controller. Then, based on the exact analytical solution of the Fokker-Planck-Kolmogorov (FPK) equation, the product function of the polynomial and the exponential polynomial is regarded as the stationary PDF of the state response. To validate the performance of the proposed control approach, we compared it with the exponential polynomial method and the multi-Gaussian closure method by implementing comparative simulation experiments. The results show that the novel PDF shape control approach is effective and feasible. Using an equal number of parameters, our method can achieve a similar or better control effect as the exponential polynomial method. By comparison with the multi-Gaussian closure method, our method has clear advantages in PDF shape control performance. For all cases, the integral of squared error and the errors of first four moments of our proposed method were very small, indicating superior performance and promising good overall control effects of our method. The approach presented in this study provides an alternative for PDF shape control in nonlinear stochastic systems.

Keywords: pdf shape; control; control approach; shape control; shape

Journal Title: IEEE/CAA Journal of Automatica Sinica
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.