LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification

Photo from academic.microsoft.com

We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good… Click to show full abstract

We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis—invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.

Keywords: neural networks; convolutional neural; multiscale rotation; invariant convolutional; rotation invariant

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.