LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonconvulsive Epileptic Seizure Detection in Scalp EEG Using Multiway Data Analysis

Photo from wikipedia

Nonconvulsive status epilepticus is a condition where the patient is exposed to abnormally prolonged epileptic seizures without evident physical symptoms. Since these continuous seizures may cause permanent brain damage, it constitutes… Click to show full abstract

Nonconvulsive status epilepticus is a condition where the patient is exposed to abnormally prolonged epileptic seizures without evident physical symptoms. Since these continuous seizures may cause permanent brain damage, it constitutes a medical emergency. This paper proposes a method to detect nonconvulsive seizures for a further nonconvulsive status epilepticus diagnosis. To differentiate between the normal and seizure electroencephalogram (EEG), a K-Nearest Neighbor, a Radial Basis Support Vector Machine, and a Linear Discriminant Analysis classifier are used. The classifier features are obtained from the Canonical Polyadic Decomposition (CPD) and Block Term Decomposition of the EEG data represented as third order tensor. To expand the EEG into a tensor, Wavelet or Hilbert-Huang transform are used. The algorithm is tested on a scalp EEG database of 139 seizures of different duration. The experimental results suggest that a Hilbert-Huang tensor representation and the CPD analysis provide the most suitable framework for nonconvulsive seizure detection. The Radial Basis Support Vector Machine classifier shows the best performance with sensitivity, specificity, and accuracy values over 98%. A rough comparison with other methods proposed in the literature shows the superior performance of the proposed method for nonconvulsive epileptic seizure detection.

Keywords: seizure detection; scalp eeg; seizure; eeg; analysis

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.