LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Brain Tumor Segmentation With Multiscale Two-Pathway-Group Conventional Neural Networks

Manual segmentation of the brain tumors for cancer diagnosis from MRI images is a difficult, tedious, and time-consuming task. The accuracy and the robustness of brain tumor segmentation, therefore, are… Click to show full abstract

Manual segmentation of the brain tumors for cancer diagnosis from MRI images is a difficult, tedious, and time-consuming task. The accuracy and the robustness of brain tumor segmentation, therefore, are crucial for the diagnosis, treatment planning, and treatment outcome evaluation. Mostly, the automatic brain tumor segmentation methods use hand designed features. Similarly, traditional methods of deep learning such as convolutional neural networks require a large amount of annotated data to learn from, which is often difficult to obtain in the medical domain. Here, we describe a new model two-pathway-group CNN architecture for brain tumor segmentation, which exploits local features and global contextual features simultaneously. This model enforces equivariance in the two-pathway CNN model to reduce instabilities and overfitting parameter sharing. Finally, we embed the cascade architecture into two-pathway-group CNN in which the output of a basic CNN is treated as an additional source and concatenated at the last layer. Validation of the model on BRATS2013 and BRATS2015 data sets revealed that embedding of a group CNN into a two pathway architecture improved the overall performance over the currently published state-of-the-art while computational complexity remains attractive.

Keywords: two pathway; tumor segmentation; brain tumor; segmentation

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.