LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sequential Saliency Guided Deep Neural Network for Joint Mitosis Identification and Localization in Time-Lapse Phase Contrast Microscopy Images

Photo by nci from unsplash

The analysis of cell mitotic behavior plays important role in many biomedical research and medical diagnostic applications. To improve the accuracy of mitosis detection in automated analysis systems, this paper… Click to show full abstract

The analysis of cell mitotic behavior plays important role in many biomedical research and medical diagnostic applications. To improve the accuracy of mitosis detection in automated analysis systems, this paper proposes the sequential saliency guided deep neural network (SSG-DNN) to jointly identify and localize mitotic events in time-lapse phase contrast microscopy images. It consists of three key modules. First, the module of visual context learning extracts static visual feature and dynamic visual transition within individual volumetric cell regions. Secondly, with these information, the module of sequential saliency modeling aims to discover the saliency distribution over all successive frames in each volumetric region. Finally, the module of sequence structure modeling can leverage both visual context and saliency distribution for mitosis identification and localization. SSG-DNN can jointly realize visual feature learning and sequential structure modeling in the end-to-end framework. Moreover, the proposed method is independent of complicated preconditioning methods for mitotic candidate extraction and can be applied for mitosis detection in one-shot manner. To our knowledge, it is the first weakly supervised work to realize joint mitosis identification and localization only with sequence-wise labels. In our experiments, we evaluate its performances of both tasks on the popular C3H10 dataset and a novel and large-scale dataset, C2C12-16, which contains much more mitotic events and is more challenging owing to diverse cell culture conditions. Experimental results can demonstrate the superiority of the proposed method.

Keywords: identification localization; microscopy; mitosis; mitosis identification; sequential saliency

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.