LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Noise Reduction Technique for Single-Color Video Plethysmography Using Singular Spectrum Analysis

Photo from wikipedia

Recently, a contactless method for measuring a biological signal using a video camera has garnered attention. Especially, video plethysmography, a technique for obtaining a pulse wave from a video, is… Click to show full abstract

Recently, a contactless method for measuring a biological signal using a video camera has garnered attention. Especially, video plethysmography, a technique for obtaining a pulse wave from a video, is useful for managing the health of people on a daily basis. However, any body movement of a person subjected to the measurement leads to the generation of irregular noise in video plethysmography and reduces the accuracy of the recorded biological information, e.g., heart rate, during the measurement. Blind source separation is a popular technique for eliminating noise from the results of video plethysmography comprising different multiple-color channels. However, it is difficult to apply this technique to a single-color video such as a near-infrared video. Herein, a new method that combines singular spectrum analysis with the circular autocorrelation function is introduced to eliminate irregular noise in single-color video plethysmography. Applying the proposed method on videos collected from 39 individuals improved the estimation accuracy of instantaneous heart rate by approximately 44% over a conventional method using a linear filter. Furthermore, the proposed method also enabled more precise estimations of the heart rate than that achieved using multi-color video plethysmography.

Keywords: video; single color; video plethysmography; color video

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.