LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bimodal Automated Carotid Ultrasound Segmentation Using Geometrically Constrained Deep Neural Networks

For asymptomatic patients suffering from carotid stenosis, the assessment of plaque morphology is an important clinical task which allows monitoring of the risk of plaque rupture and future incidents of… Click to show full abstract

For asymptomatic patients suffering from carotid stenosis, the assessment of plaque morphology is an important clinical task which allows monitoring of the risk of plaque rupture and future incidents of stroke. Ultrasound Imaging provides a safe and non-invasive modality for this, and the segmentation of media-adventitia boundaries and lumen-intima boundaries of the Carotid artery form an essential part in this monitoring process. In this paper, we propose a novel Deep Neural Network as a fully automated segmentation tool, and its application in delineating both the media-adventitia boundary and the lumen-intima boundary. We develop a new geometrically constrained objective function as part of the Network's Stochastic Gradient Descent optimisation, thus tuning it to the problem at hand. Furthermore, we also apply a bimodal fusion of amplitude and phase congruency data proposed by us in previous work, as an input to the network, as the latter provides an intensity-invariant data source to the network. We finally report the segmentation performance of the network on transverse sections of the carotid. Tests are carried out on an augmented dataset of 81,000 images, and the results are compared to other studies by reporting the DICE coefficient of similarity, modified Hausdorff Distance, sensitivity and specificity. Our proposed modification is shown to yield improved results on the standard network over this larger dataset, with the advantage of it being fully automated. We conclude that Deep Neural Networks provide a reliable trained manner in which carotid ultrasound images may be automatically segmented, using amplitude data and intensity invariant phase congruency maps as a data source.

Keywords: carotid ultrasound; geometrically constrained; deep neural; neural networks; segmentation; network

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.