LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Automatic R and T Peak Detection Method Based on the Combination of Hierarchical Clustering and Discrete Wavelet Transform

Photo by zburival from unsplash

The detection and delineation of QRS-complexes and T-waves in Electrocardiogram (ECG) is an important task because these features are associated with the cardiac abnormalities including ventricular arrhythmias that may lead… Click to show full abstract

The detection and delineation of QRS-complexes and T-waves in Electrocardiogram (ECG) is an important task because these features are associated with the cardiac abnormalities including ventricular arrhythmias that may lead to sudden cardiac death. In this paper, we propose a novel method for the R-peak and the T-peak detection using hierarchical clustering and Discrete Wavelet Transform (DWT) from the ECG signal. In the first step, a template of the single ECG beat is identified. Secondly, all R-peaks are detected by using hierarchical clustering. Then, each corresponding T-wave boundary is delineated based on the template morphology. Finally, the determination of T wave peaks is achieved based on the Modulus-Maxima Analysis (MMA) of the DWT coefficients. We evaluated the algorithm by using all records from the MIT-BIH arrhythmia database and QT database. The R-peak detector achieved a sensitivity of 99.89%, a positive predictivity of 99.97% and 99.83% accuracy over the validation MIT-BIH database. In addition, it shows a sensitivity of 100%, a positive predictivity of 99.83% in manually annotated QT database. It also shows 99.92% sensitivity and 99.96% positive predictivity over the automatic annotated QT database. In terms of the T-peak detection, our algorithm is verified with 99.91% sensitivity and 99.38% positive predictivity in manually annotated QT database.

Keywords: hierarchical clustering; peak detection; discrete wavelet; database; clustering discrete; detection

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.