Chest auscultation is a widely used clinical tool for respiratory disease detection. The stethoscope has undergone a number of transformative enhancements since its invention, including the introduction of electronic systems… Click to show full abstract
Chest auscultation is a widely used clinical tool for respiratory disease detection. The stethoscope has undergone a number of transformative enhancements since its invention, including the introduction of electronic systems in the last two decades. Nevertheless, stethoscopes remain riddled with a number of issues that limit their signal quality and diagnostic capability, rendering both traditional and electronic stethoscopes unusable in noisy or non-traditional environments (e.g., emergency rooms, rural clinics, ambulatory vehicles). This work outlines the design and validation of an advanced electronic stethoscope that dramatically reduces external noise contamination through hardware redesign and real-time, dynamic signal processing. The proposed system takes advantage of an acoustic sensor array, an external facing microphone, and on-board processing to perform adaptive noise suppression. The proposed system is objectively compared to six commercially-available acoustic and electronic devices in varying levels of simulated noisy clinical settings and quantified using two metrics that reflect perceptual audibility and statistical similarity, normalized covariance measure (NCM) and magnitude squared coherence (MSC). The analyses highlight the major limitations of current stethoscopes and the significant improvements the proposed system makes in challenging settings by minimizing both distortion of lung sounds and contamination by ambient noise.
               
Click one of the above tabs to view related content.