LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms

Photo from wikipedia

Current clinical practice or radiomics studies of pancreatic neuroendocrine neoplasms (pNENs) require manual delineation of the lesions in computed tomography (CT) images, which is time-consuming and subjective. We used a… Click to show full abstract

Current clinical practice or radiomics studies of pancreatic neuroendocrine neoplasms (pNENs) require manual delineation of the lesions in computed tomography (CT) images, which is time-consuming and subjective. We used a semi-automatic deep learning (DL) method for segmentation of pNENs and verified its feasibility in radiomics analysis. This retrospective study included two datasets: Dataset 1, contrast-enhanced CT images (CECT) of 80 and 18 patients respectively collected from two centers; and Dataset 2, CECT of 56 and 16 patients respectively from two centers. A DL-based semi-automatic segmentation model was developed and validated with Dataset 1 and Dataset 2, and the segmentation results were used for radiomics analysis from which the performance was compared against that based on manual segmentation. The mean Dice similarity coefficient of the trained segmentation model was 81.8% and 74.8% for external validation with Dataset 1 and Dataset 2 respectively. Four classifiers frequently used in radiomics studies were trained and tested with leave-one-out cross-validation strategy. For pathological grading prediction with Dataset 1, the area under the receiver operating characteristic curve (AUC) with semi-automatic segmentation was up to 0.76 and 0.87 respectively for internal and external validation. For recurrence study with Dataset 2, the AUC with semi-automatic segmentation was up to 0.78. All these AUCs were not statistically significant from the corresponding results based on manual segmentation. Our study showed that DL-based semi-automatic segmentation is accurate and feasible for the radiomics analysis in pNENs.

Keywords: radiomics analysis; automatic segmentation; segmentation; based semi; semi automatic

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.