LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hematoma Expansion Context Guided Intracranial Hemorrhage Segmentation and Uncertainty Estimation

Photo by niklas_hamann from unsplash

Accurate segmentation of the Intracranial Hemorrhage (ICH) in non-contrast CT images is significant for computer-aided diagnosis. Although existing methods have achieved remarkable11The code will be available from https://github.com/JohnleeHIT/SLEX-Net. results, none… Click to show full abstract

Accurate segmentation of the Intracranial Hemorrhage (ICH) in non-contrast CT images is significant for computer-aided diagnosis. Although existing methods have achieved remarkable11The code will be available from https://github.com/JohnleeHIT/SLEX-Net. results, none of them incorporated ICH’s prior information in their methods. In this work, for the first time, we proposed a novel SLice EXpansion Network (SLEX-Net), which incorporated hematoma expansion in the segmentation architecture by directly modeling the hematoma variation among adjacent slices. Firstly, a new module named Slice Expansion Module (SEM) was built, which can effectively transfer contextual information between two adjacent slices by mapping predictions from one slice to another. Secondly, to perceive contextual information from both upper and lower slices, we designed two information transmission paths: forward and backward slice expansion, and aggregated results from those paths with a novel weighing strategy. By further exploiting intra-slice and inter-slice context with the information paths, the network significantly improved the accuracy and continuity of segmentation results. Moreover, the proposed SLEX-Net enables us to conduct an uncertainty estimation with one-time inference, which is much more efficient than existing methods. We evaluated the proposed SLEX-Net and compared it with some state-of-the-art methods. Experimental results demonstrate that our method makes significant improvements in all metrics on segmentation performance and outperforms other existing uncertainty estimation methods in terms of several metrics.

Keywords: slice; segmentation; uncertainty estimation; expansion; information

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.