LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ensembled Transfer Learning and Multiple Kernel Learning for Phonocardiogram Based Atherosclerotic Coronary Artery Disease Detection

Photo from wikipedia

Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of… Click to show full abstract

Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.

Keywords: kernel learning; multiple kernel; artery disease; detection; coronary artery

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.