Total anomalous pulmonary venous connection (TAPVC) is a rare but mortal congenital heart disease in children and can be repaired by surgical operations. However, some patients may suffer from pulmonary… Click to show full abstract
Total anomalous pulmonary venous connection (TAPVC) is a rare but mortal congenital heart disease in children and can be repaired by surgical operations. However, some patients may suffer from pulmonary venous obstruction (PVO) after surgery with insufficient blood supply, necessitating special follow-up strategy and treatment. Therefore, it is a clinically important yet challenging problem to predict such patients before surgery. In this paper, we address this issue and propose a computational framework to determine the risk factors for postoperative PVO (PPVO) from computed tomography angiography (CTA) images and build the PPVO risk prediction model. From clinical experiences, such risk factors are likely from the left atrium (LA) and pulmonary vein (PV) of the patient. Thus, 3D models of LA and PV are first reconstructed from low-dose CTA images. Then, a feature pool is built by computing different morphological features from 3D models of LA and PV, and the coupling spatial features of LA and PV. Finally, four risk factors are identified from the feature pool using the machine learning techniques, followed by a risk prediction model. As a result, not only PPVO patients can be effectively predicted but also qualitative risk factors reported in the literature can now be quantified. Finally, the risk prediction model is evaluated on two independent clinical datasets from two hospitals. The model can achieve the AUC values of 0.88 and 0.87 respectively, demonstrating its effectiveness in risk prediction.
               
Click one of the above tabs to view related content.