LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SRG-Vote: Predicting Mirna-Gene Relationships via Embedding and LSTM Ensemble

Photo from wikipedia

Targeted therapy for one for a set of genes has made it possible to apply precision medicine for different patients due to the existence of tumor heterogeneity. However, how to… Click to show full abstract

Targeted therapy for one for a set of genes has made it possible to apply precision medicine for different patients due to the existence of tumor heterogeneity. However, how to regulate those genes are still problematic. One of the natural regulators of genes is microRNAs. Thus, a better understanding of the miRNA-gene interaction mechanism might contribute to future diagnosis, prevention, and cancer therapy. The interactions between microRNA and genes play an essential role in molecular genetics. The in-vivo experiments validating the relationships between them are time-consuming, money-costly, and labor-intensive. With the development of high-throughput technology, we dealt with tons of biological data. However, extracting features from tremendous raw data and making a mathematical model is still a challenging topic. Machine learning and deep learning algorithms have become powerful tools in dealing with biological data. Inspired by this, in this paper, we propose a model that combines features/embedding extraction methods, deep learning algorithms, and a voting system. We leverage doc2vec to generate sequential embedding from molecular sequences. The role2vec, GCN, and GMM for geometrical embedding were generated from the complex network from similarity and pair-wise datasets. For the deep learning algorithms, we leveraged LSTM and Bi-LSTM according to different embedding and features. Finally, we adopted a voting system to balance results from different data sources. The results have shown that our voting system could achieve a higher AUC than the existing benchmark. The case studies demonstrate that our model could reveal potential relationships between miRNAs and genes. The source code, features, and predictive results can be downloaded at https://github.com/Xshelton/SRG-vote.

Keywords: learning algorithms; deep learning; mirna gene; srg vote

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.