LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multi-Task Feature Fusion Model for Cervical Cell Classification

Photo by nci from unsplash

Cervical cell classification is a crucial technique for automatic screening of cervical cancer. Although deep learning has greatly improved the accuracy of cell classification, the performance still cannot meet the… Click to show full abstract

Cervical cell classification is a crucial technique for automatic screening of cervical cancer. Although deep learning has greatly improved the accuracy of cell classification, the performance still cannot meet the needs of practical applications. To solve this problem, we propose a multi-task feature fusion model that consists of one auxiliary task of manual feature fitting and two main classification tasks. The auxiliary task enhances the main tasks in a manner of low-layer feature fusion. The main tasks, i.e., a 2-class classification task and a 5-class classification task, are learned together to realize their mutual reinforcement and alleviate the influence of unreliable labels. In addition, a label smoothing method based on cell category similarity is designed to bring inter-cell class information into the label. Comparative experimental results with other state-of-the-art models on the HUSTC and SIPaKMeD datasets prove the effectiveness of the proposed method. With a high sensitivity of 99.82% and a specificity of 98.12% for the 2-class classification task on the HUSTC dataset, our method shows potential to reduce cytologist workload.

Keywords: classification; feature fusion; cell classification; task

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.